p38 Mitogen-activated protein kinase regulates Bax translocation in cyanide-induced apoptosis.
نویسندگان
چکیده
Execution of cyanide-induced apoptosis is mediated by release of cytochrome c from mitochondria. To determine how cyanide initiates cytochrome c release, Bax translocation was investigated in primary cultures of cortical neurons. Under nonapoptotic (control) conditions, Bax resided predominantly in the cytoplasm. After 300-microM cyanide treatment for 1 h, Bax translocated to the mitochondria, as shown by immunocytochemical staining and subcellular fractionation; Western blot analysis confirmed "cytosol-to-mitochondria" translocation of Bax. Temporal analysis showed that Bax translocation preceded cytochrome c release from the mitochondria, which was initiated 3 h after cyanide treatment. In double-immunofluorescence labeling for both Bax and cytochrome c, it was observed that cytochrome c was released only in cells showing Bax in mitochondria. The role of p38 mitogen-activated protein (MAP) kinase in Bax translocation was studied. The p38 MAP kinase was activated 30 min after cyanide, and its phosphorylation level of activity began to decrease 3 h later. SB203580, a p38 MAP kinase inhibitor, blocked translocation of Bax to mitochondria, whereas SB202474, a control peptide, had no effect on translocation. Inhibition of p38 MAP kinase by SB203580 blocked all downstream effects of Bax translocation, including cytochrome c release, caspase activation, and internucleosomal DNA fragmentation. These results demonstrated that Bax translocation is critical for cyanide-induced cytochrome c release and that p38 MAP kinase regulates Bax translocation from cytosol to mitochondria.
منابع مشابه
Bax translocates to mitochondria of heart cells during simulated ischaemia: involvement of AMP-activated and p38 mitogen-activated protein kinases.
The cytosolic protein Bax plays a key role in apoptosis by migrating to mitochondria and releasing proapoptotic proteins from the mitochondrial intermembrane space. The present study investigates the movement of Bax in isolated rat neonatal cardiomyocytes subjected to simulated ischaemia (minus glucose, plus cyanide), using green fluorescent protein-tagged Bax as a means of imaging Bax movement...
متن کاملReactive oxygen species and p38 mitogen-activated protein kinase activate Bax to induce mitochondrial cytochrome c release and apoptosis in response to malonate.
Malonate, an inhibitor of mitochondrial complex II, is a widely used toxin to study neurodegeneration in Huntington's disease and ischemic stroke. We have shown previously that malonate increased reactive oxygen species (ROS) production in human SH-SY5Y neuroblastoma cells, leading to oxidative stress, cytochrome c release, and apoptotic cell death. Expression of a green fluorescent protein-Bax...
متن کاملModulation of H2O2- Induced Neurite Outgrowth Impairment and Apoptosis in PC12 Cells by a 1,2,4-Triazine Derivative
Introduction: Increased oxidative stress is widely accepted to be a factor in the development and progression of Alzheimer’s disease. Triazine derivatives possess a wide range of pharmacological activities including anti-oxidative and anti-in.ammatory actions. In this study, we aimed to investigate the possible protective effect of 3-thioethyl-5,6-dimethoxyphenyl-1,2,4-triazine (TEDMT) on H2O2-...
متن کاملReactive Oxygen Species and P38 Mapk Activate Bax to Induce Mitochondrial Cytochrome C Release and Apoptosis in Response to Malonate
Malonate, an inhibitor of mitochondrial complex II, is a widely used toxin to study neurodegeneration in Huntington’s disease and ischemic stroke. We have previously shown that malonate increased reactive oxygen species (ROS) production in human SH-SY5Y neuroblastoma cells, leading to oxidative stress, cytochrome-c release, and apoptotic cell death. Expression of a Green Fluorescent Protein-Bax...
متن کاملPhosphorylation of p38 mitogen-activated protein kinase downstream of bax-caspase-3 pathway leads to cell death induced by high D-glucose in human endothelial cells.
Because high D-glucose significantly stimulates endothelial cell death, we examined the molecular mechanisms of high D-glucose-induced endothelial apoptosis. Treatment of human aortic endothelial cells with high D-glucose (25 mmol/l), but not mannitol and L-glucose, resulted in a significant decrease in cell number and a significant increase in apoptotic cells as compared with a physiological c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Toxicological sciences : an official journal of the Society of Toxicology
دوره 75 1 شماره
صفحات -
تاریخ انتشار 2003